
Operating System Support for
Database Management

What is an operating system?

 Hardware

 OS

 Application

So what is the implication

 Design decisions affected

 Consider the following

 Page replacements

 File Systems

 Scheduling

 Process management & IPC

 Designed to work well in general

Is this enough?

 “Systems” does not mean Operating Systems

 Many other kinds of systems

 Network Systems

 Database Systems

 Pub/Sub systems

 These also interface between hardware and
users

 But here users have different requirements

What’s the insight?

 Many systems have specific properties

 General purpose operating systems principles work
bad

 Why must I know this
 Understand why general purpose operating systems are

designed such

 Understand that the principles might fail in many cases

 Must understand the requirements of the system being
designed

 Let us look at this from a database perspective

Lets take a detour

 What is a database system

 Set of relations describe a schema

 Each relation corresponds to a table on
disc

 Let us look at an example

 Company X’s employee database

Example Contd….

 Two relations

 Emp(id, name, age, sex)

 Dept(id, dept_name, address)

 Each relation consists of a set of records

 These records are on disc

 Data size can be in the order of terabytes

 The two relations comprise the schema

How is this data used?

 Query the data

 Select: Find all employees with age greater
than 28

 Project: Find the names of all the
employees

 Join: Find the departments in which John
and Mary work

Database indexes

 Used to process queries efficiently

 Two kinds

 B+ tree

 Hash index

 Select: Use B+ index

 Project: Scan the relation sequentially

 Join: Loop over Dept for every id

Ok so how do you build such a
system

 Hardware

 OS

 Database

Buffer Pool Management

 Main memory caches in file systems
 LRU

 Prefetching

 Kinds of accesses databases see
 Sequential with no rereference

 Sequential access with cyclic rereference

 Random access with no rereference

 Random access with rereference

Design decisions

 LRU good only for case 4

 When you see a query you know the
way it will access the relation

 Buffer manager follows policy according
to query

Crash recovery

 Need to provide recovery from hard and
soft failures
 Finished transactions must be recovered

 Unfinished must be undone

 What is required for this
 Pages that finished transactions touch

must be flushed to disc

 Many OS’s you cannot do that

File System

 Tables stored as Unix files

 Files extend block at a time

 Blocks scattered all over disc

 Why is this bad for databases?

 File blocks stored as a tree in an inode

 Don’t B+ trees do something similar

 Can combining both give better efficiency

Two approaches for running a
multi-user database system

One process per user

 Easy to implement in Unix

 Problems

 Buffer miss will cause a task switch

 Round robin scheduling can remove a
database process

 Not good for performance as queries line
up

Server Model

 What facility must the OS provide?

 n Processes send messages to one
destination

 Even then server must take care of

 Scheduling

 Multitasking

 Duplication of OS services

Other issues

 Fine grained locking

 Provided: Locking at level of files

 Needed: Locking at level of records

Conclusion

 Operating system services inappropriate
for database systems

 Before designing any system

 Carefully study its requirements

 Then decide how best to build it

 Welcome to the world of systems !!!

