
Operating System Support for
Database Management

What is an operating system?

 Hardware

 OS

 Application

So what is the implication

 Design decisions affected

 Consider the following

 Page replacements

 File Systems

 Scheduling

 Process management & IPC

 Designed to work well in general

Is this enough?

 “Systems” does not mean Operating Systems

 Many other kinds of systems

 Network Systems

 Database Systems

 Pub/Sub systems

 These also interface between hardware and
users

 But here users have different requirements

What’s the insight?

 Many systems have specific properties

 General purpose operating systems principles work
bad

 Why must I know this
 Understand why general purpose operating systems are

designed such

 Understand that the principles might fail in many cases

 Must understand the requirements of the system being
designed

 Let us look at this from a database perspective

Lets take a detour

 What is a database system

 Set of relations describe a schema

 Each relation corresponds to a table on
disc

 Let us look at an example

 Company X’s employee database

Example Contd….

 Two relations

 Emp(id, name, age, sex)

 Dept(id, dept_name, address)

 Each relation consists of a set of records

 These records are on disc

 Data size can be in the order of terabytes

 The two relations comprise the schema

How is this data used?

 Query the data

 Select: Find all employees with age greater
than 28

 Project: Find the names of all the
employees

 Join: Find the departments in which John
and Mary work

Database indexes

 Used to process queries efficiently

 Two kinds

 B+ tree

 Hash index

 Select: Use B+ index

 Project: Scan the relation sequentially

 Join: Loop over Dept for every id

Ok so how do you build such a
system

 Hardware

 OS

 Database

Buffer Pool Management

 Main memory caches in file systems
 LRU

 Prefetching

 Kinds of accesses databases see
 Sequential with no rereference

 Sequential access with cyclic rereference

 Random access with no rereference

 Random access with rereference

Design decisions

 LRU good only for case 4

 When you see a query you know the
way it will access the relation

 Buffer manager follows policy according
to query

Crash recovery

 Need to provide recovery from hard and
soft failures
 Finished transactions must be recovered

 Unfinished must be undone

 What is required for this
 Pages that finished transactions touch

must be flushed to disc

 Many OS’s you cannot do that

File System

 Tables stored as Unix files

 Files extend block at a time

 Blocks scattered all over disc

 Why is this bad for databases?

 File blocks stored as a tree in an inode

 Don’t B+ trees do something similar

 Can combining both give better efficiency

Two approaches for running a
multi-user database system

One process per user

 Easy to implement in Unix

 Problems

 Buffer miss will cause a task switch

 Round robin scheduling can remove a
database process

 Not good for performance as queries line
up

Server Model

 What facility must the OS provide?

 n Processes send messages to one
destination

 Even then server must take care of

 Scheduling

 Multitasking

 Duplication of OS services

Other issues

 Fine grained locking

 Provided: Locking at level of files

 Needed: Locking at level of records

Conclusion

 Operating system services inappropriate
for database systems

 Before designing any system

 Carefully study its requirements

 Then decide how best to build it

 Welcome to the world of systems !!!

